SIFT特徴検出器と記述子抽出器#

この例では、SIFT特徴検出とその記述アルゴリズムを示します。

尺度不変特徴変換(SIFT)[1]は1999年に発表され、 「画像のスケーリング、平行移動、回転に対して不変であり、照明変化やアフィン変換、3D投影に対しても部分的に不変である」[2]という約束から、現在でも最も人気のある特徴検出器の1つです。最大の欠点は実行時間で、ORBよりも「2桁」[3]遅いと言われており、リアルタイムアプリケーションには適していません。

参考文献#

Original Image vs. Flipped Image (all keypoints and matches), Original Image vs. Flipped Image (subset of matches for visibility), Original Image vs. Transformed Image (all keypoints and matches), Original Image vs. Transformed Image (subset of matches for visibility)
import matplotlib.pyplot as plt

from skimage import data
from skimage import transform
from skimage.color import rgb2gray
from skimage.feature import match_descriptors, plot_matched_features, SIFT

img1 = rgb2gray(data.astronaut())
img2 = transform.rotate(img1, 180)
tform = transform.AffineTransform(scale=(1.3, 1.1), rotation=0.5, translation=(0, -200))
img3 = transform.warp(img1, tform)

descriptor_extractor = SIFT()

descriptor_extractor.detect_and_extract(img1)
keypoints1 = descriptor_extractor.keypoints
descriptors1 = descriptor_extractor.descriptors

descriptor_extractor.detect_and_extract(img2)
keypoints2 = descriptor_extractor.keypoints
descriptors2 = descriptor_extractor.descriptors

descriptor_extractor.detect_and_extract(img3)
keypoints3 = descriptor_extractor.keypoints
descriptors3 = descriptor_extractor.descriptors

matches12 = match_descriptors(
    descriptors1, descriptors2, max_ratio=0.6, cross_check=True
)
matches13 = match_descriptors(
    descriptors1, descriptors3, max_ratio=0.6, cross_check=True
)
fig, ax = plt.subplots(nrows=2, ncols=2, figsize=(11, 8))

plt.gray()

plot_matched_features(
    img1,
    img2,
    keypoints0=keypoints1,
    keypoints1=keypoints2,
    matches=matches12,
    ax=ax[0, 0],
)
ax[0, 0].axis('off')
ax[0, 0].set_title("Original Image vs. Flipped Image\n" "(all keypoints and matches)")

plot_matched_features(
    img1,
    img3,
    keypoints0=keypoints1,
    keypoints1=keypoints3,
    matches=matches13,
    ax=ax[1, 0],
)
ax[1, 0].axis('off')
ax[1, 0].set_title(
    "Original Image vs. Transformed Image\n" "(all keypoints and matches)"
)

plot_matched_features(
    img1,
    img2,
    keypoints0=keypoints1,
    keypoints1=keypoints2,
    matches=matches12[::15],
    ax=ax[0, 1],
    only_matches=True,
)
ax[0, 1].axis('off')
ax[0, 1].set_title(
    "Original Image vs. Flipped Image\n" "(subset of matches for visibility)"
)

plot_matched_features(
    img1,
    img3,
    keypoints0=keypoints1,
    keypoints1=keypoints3,
    matches=matches13[::15],
    ax=ax[1, 1],
    only_matches=True,
)
ax[1, 1].axis('off')
ax[1, 1].set_title(
    "Original Image vs. Transformed Image\n" "(subset of matches for visibility)"
)

plt.tight_layout()
plt.show()

スクリプトの総実行時間:(0分6.490秒)

Sphinx-Galleryによって生成されたギャラリー